PFAS 吸着剤の性能評価

【各種試験】

① ジャーテスト : 粉末活性炭等を対象に、注入率と除去効果の関係を把握

② 吸着等温線試験 :吸着材の潜在的吸着能力を把握

③ RSSCT : パイロットスケール試験を 1/100 程度の時間で促進して実施し、

処理水質の時間的変化を把握

④ パイロットスケール試験:実際の処理施設と同等の規模で、処理水質の時間的変化を把

握

【主力商品について】

【主力商品について】		
	吸着等温線試験	RSSCT (迅速小型カラム試験)
目的		吸着剤のライフ (交換を要するまでの期
	ためのデータ収集	間) や 最適な SV を把握するためのデー
		タ収集
概要	● 既知濃度の PFAS 溶液に、既知量	● 吸着剤を粉砕してカラムに充填し、
	(複数条件を設定) の吸着材を投	連続的に処理することで通水倍率
	入し、平衡状態にする。	(処理時間)と処理水質との関係を
	● 各平衡濃度[C]を測定し、単位質	把握する。
	量当りの PFAS 吸着量[q]を算定、	● 粉砕することによりパイロットス
	[C]と[q]の関係を把握する	ケール試験と比較し、時間、コスト、
		労力を大幅に削減できる。
期 間※1	分析結果の速報までに2週間程度	分析結果の速報までに1ヶ月間程度
結果の概念図*2	吸着量 q [ng/mg]	○理水濃度 [ng/L]
	平衡濃度 C [ng/L]	通水倍率 [倍]

※1:試験開始からの必要期間(試験条件、実施時期によって異なります)

※2:試験条件、水質測定結果と合わせてご報告いたします